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On the algebraic decay of disturbances in a 
stratiseed linear shear flow 

By S. N. BROWN AND K. STEWARTSON 
Department of Mathematics, University College, London 

(Received 13 September 1979) 

In this note we confirm the time dependence of the decay of disturbances in a stratified 
linear shear flow found by Eliassen, Hrailand & Riis (1953) and by Booker & Bretherton 
(1967). The result differs from those of Case (1960b) and of Chimonas (1979) which are 
incarrec t . 

1. Introduction 
If U(y), R’(y) are the velocity and density gradients of a plane parallel shear flow 

in the x direction and $(z, y, t ) ,  T(z ,  y, t )  are the perturbation stream function and tem- 
perature respectively, then the non-dimensional, linearized equations of motion for 
an inviscid fluid are 

a a a$ aT (%+ U ( y ) z )  V2$- UN(y)- ax = -B2-, ax 

T + B ’ ( y ) -  w = 0. 
ax 

Here B2 is a representative Richardson number and the Oberbeck-Boussinesq approxi- 
mation has been applied. Booker & Bretherton (1967), in a discussion of the absorp- 
tion properties of a critical layer resulting from a forcing at a fixed value of y, noted 
in passing that when t 9 I and B2 > 4 equations ( l . l ) ,  (1.2) have, for the particular 
case of a linear shear with U(y) = y and R’(y) = - I, a solution of the form 

(1.3) $(x, y, t )  M t+*T*(y) e--iJ@-yt), 

where v2 = & - B2 and k is real. Just so, and indeed the result is true for all B2. This 
formula was previously established by Eliassen et al. (1953) - see also Phillips (1966) - 
but is however in contradiction with the results of Case (1960b) who predicted the 
form 

$(x, 3, t )  = tU-@J?1(y), 

+(x ,  y, t )  M tW-lY?,(y) e--ik(z-yt), 

(1.4) 

when 0 < v < +, and the recent result of Chimonas (1979) who obtained 

(1.5) 

both of which decay more slowly than (1.3). 
It is easily verified that (1.5) does not satisfy (1.1) and (1 2) asymptotically, and 

neither can (1.4) for any smooth function Y1. It is also surprising that Y, as given by 
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Chimonas depends point-wise on the initial density distribution and not on an inte- 
grated form. The purpose of this note is to demonstrate that Eliassen et al. and Booker 
and Bretherton were correct and that (1.3) is appropriate. In  fact the solution corre- 
sponding to (1.3) for nonlinear shears and density profiles has the form 

as may easily be verified by substitution into (1.1) and (1.2), where 

and, unless B = 0 and h = - 1, 

g(y) and the successive terms in (1.6) can then be found by direct substitution of (1.6) 
into (1 .1)  and (1.2). However if B = 0 and h = - 1, g(y) is arbitrary and 

In the following we restrict ourselves to the justification of (1.3) as it stands. 

is zero and (1.3) must be replaced by an expression of the form 
When B = 0 and B2T = 0, the homogeneous situation, the coefficient of t-l in (1.3) 

$(x, y, t )  NN t -2Y(y)  e--ik(s-*t) (1.10) 

a result in agreement with that of Orr (1907) and of Engevik (1966) (see also Brown & 
Stewartson 1978) but not with that of Case ( 1 9 6 0 ~ ) .  Indeed (1.10) can be deduced at 
once by inspection of 

v2+ = a ( x  - yt, y) (1.11) 

which for arbitrary G(x, y) is the general exact solution of (1.1) when B = B2T = 0, 
u = y. 

2. A particular integral for a linear shear 
If at t = 0, the quantities @ and T are functions of x alone so that 

$(x, y, 0) = a&), T(z ,  y, 0) = a;@) (2.1) 

then a particular integral of (1 .  I), (1.2) when U(y) = y and R'(y) = - 1 may be verified 
to be 

T(x, Y, t )  = fdt) 4 2  - Yt)  + f Z ( t )  a;@ - yt), (2.2) 

1 Y 1  Y l  -+-, -, - t 2 ) ,  f 2 ( t )  = F -P). (2.4) 
3 Y 3  Y 3  
4 2 ' 4  2 2 

fl(t) = tF (--- 
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Here P is the hypergeometric function in the usual notation, v2 = 4 - B2 and v 
may be real or imaginary. Now for large t ,  

(v -  l)! (v-+) (-v- l)! (-v-&) 
(2.5) 

2 4  

(v- l)! ( v -4 )  (-v- l)! (-v-+) 
(2.6) 

2 4  

from which the asymptotic form of $ for t 9 1 follows immediately and is seen to 
have the behaviour predicted in (1.3). 

If B2 1, (2.2), (2.3) reduce to 

T(x,  y, t )  = (tan-l t )  a;(x- yt) + a;(% - yt), (2-7) 

1 Bat 
$(x, y, t )  = l+t2 a1(x - yt) - - a (x - yt) 

l + t 2  

in agreement with (1.10) when B2T = 0 and with (1.3) when B2T = O(1). We note 
incidentally that the second term in (2.8) eventually dominates if there is any density 
disturbance no matter how small. We note also that if the initial conditions (2.1) have 
compact support in x, it is the asymptotic behaviour a t  fixed x- yt and not a t  fixed x 
which is of interest, a point to which Chimonas (1979) correctly drew attention, as 
did Engevik (1966). 

3. The problem for a single Fourier component with y-dependent initial 
conditions 

When the initial values of $ and T depend on y as well as x then a solution as 
simple as (2.2), (2.3) does not appear to exist, but we may examine the solution of 
the initial value problem for one Fourier component which without loss of generality 
we may take to be e-ikx. Thus with 

we have 
$(x, y,t) = e-ikzq5(y, t ) ,  T(z,  y,t) = t ) ,  (3.1) 

($ - iky) (3 - k2+) = B2ikS, - - iky S i- ik+ = 0, 
C t  ) 

together with suitable initial conditions, for example 

#fY,t) = +O(Y) ,  4 Y , t )  = fJo(Y) a t  t = 0 (3.3) 

$+ 0 as [yl -fa for all t 2 0. (3.4) 

and, for unbounded flow, 

If the Laplace transform with respect to t of #(y, t )  is denoted by $(y, s) the system 
(3.2), (3.3) may be written as 

( k y + i ~ ) ~ ( g - k ~ $ )  +B2kz$ = i(ky+i8)($; -k2$o)-B2ikS,, (3.5) 
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which may be compared with (3.1) of Chimonas (1979). The boundary condition (3.4) 
is applicable with 4 replaced by 3. In  the following we discuss the solution of (3.5) 
first in the limit B + 0 and then for general B2. 

The x-independent solutions of (l.l), (1.2) correspond to those of (3.2) with k set 
equal to zero and may be written down immediately. They are clearly independent 
of t  and do not evolve with time. In  any subsequent superposition of solutions of the 
form (3.1) their role may be essential if the initial vorticity or temperature happens 
to have a non-zero integral with respect to x. In  the following, however, we take 
k =k 0 though if necessary the limiting process may be made in the appropriate results. 

4. Thelimit B+O 
To facilitate comparison with Chimonas we rewrite (3.5) as 

where 

We now set B = 0 on the left-hand side and shall find that if it is assumed that 
Fo( Y) =k 0 then q5 = O(t-l) as t --z co. Under the same assumption Chimonas’ result is 
4 = O(1). When B2S = 0 also, so that Po( Y )  = 0, we shall find that 4 = O(t-2). 

With B = 0 the solution of (4.1) such that @ -+ 0 as 1 Y J  -+ co is 

On inverting the Laplace transforms in (4.4) we obtain 

2@( Y ,  t )  = t city JOm e-p(Po( Y + p )  e i p t +  yo( Y - p )  e-ipt} dp 

where @( Y ,  t )  = #(y, t ) .  The result (4.5) is exact for all t and its asymptotic form for 
large t may be obtained by integrating by parts. On doing this it is found that the 
terms O(1) in the two integrals involving Fo cancel as do the terms O(t-l)  in the two 
integrals involving Fl. The final result is 

eitY eitY 
@( y ,  t )  = F,( Y )  7 {I + O(t-1)) + iFl( Y )  7 {I + O(t-1)) 

to which Chimonas’ formula (A 12) should reduce as u + 9. The reason that it does 
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not is that the replacement of s by iy‘ + e and subsequent treatment of e as a constant 
in (A 10) is unjustified. A similar error is made by Case (1960b). 

To compare (4.6) with ( 2 . 8 )  we identify $ ( y ,  t )  with the Fourier transform of $(x, y ,  t )  
with respect to x and note that (4.3) and (2.1) imply that 

El@) = i&( Y ) ,  Z2(k) = -Po( Y)/B2, (4.7) 

where El@), Z 2 ( k )  are the transforms of a l ( x ) ,  a2(x) respectively. But, from (2 .8) ,  

which is exactly the result obtained from (4.6) if F,, Fl are replaced by the constant 
values in (4.7). This example also illustrates how the Fourier representation enables 
the convective stability of the flow to be examined in co-ordinates in which x-ty is 
held fixed as t + co, a point already made by Engevik (1966). 

With Po set equal to zero equation (4.6) is analogous to the result obtained by Orr 
(1907) and Engevik (1966) for a homogeneous fluid bounded in the y direction. 

5. The case B + 0 

When B + 0 an explicit expression as simple as (4.5) for @ does not exist but two 
asymptotic approaches are possible which both lead to the same answer and reduce 
to (4.6) in the limit B + 0. In  the first method the differential equation is subjected to 
an asymptotic analysis and in the second the exact transform of 0 is examined as 
t + 00. We do not present the details of the first method here but, for the second, note 
that the solution of (4.1) such that 6 + 0 as I YI + co is, when written in a form 
convenient for analysis as t + co, 

B26( Y ,  s) = Po( Y )  + ( Y  + is) Pl( Y )  

+- ( Y  + is)*K,( Y + is) 1 
( -  Y’ -is)iK,( - Y’ - i s )H(  Y’, s) dY’ 

7.r 

(5.1) 

1 +- ( - Y -  - Y - is) ( Y’ +is)* K,( Y’ +is) H (  Y‘ ,  8) d Y’,  
7 T ’  

equivalent to (A 9) of Chimonas’ paper. Here 

H (  Y ,  s) = P: ( Y )  - Po( Y )  + ( Y + is) [q( Y )  - Fl( Y ) ]  + 2F;( Y )  (5 .2 )  

and Po( Y ) ,  Pl( Y )  are defined in (4.3). The branch points of (5.1) are at s = iY and in 
this neighbourhood 

B26( Y ,  8 )  M Po( Y )  

1 ” Y + is)&+ 2-,( Y + is)&+,] s’ 
+ .GGi [ (. ( - Y)! V! -03  

( Y  - Y’)+K,( Y - Y’)  H (  Y’ ,  i Y )  d Y  - 
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The contributions from the branch points then show that, for t $- 1, 
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where 

For the particular case when @ and T are functions of x alone at t = 0, SO that (4.7) 
holds, it may be shown that (5.4) is equal to the asymptotic form for 19 1 of the 
Fourier transform of (2.3). 

In this note we have not made mention of possible solutions of (l.l), ( 1 . 2 )  propor- 
tional to exp [ - i k ( x - c t ) ]  for constant c. These would give rise to poles in (5.1) and 
we suspect that none exist for any B2 > 0 for the problem considered here, though we 
have not attempted to prove it. When B = 0 there are certainly none. They do of 
course exist for nonlinear profiles which are unstable in the usual sense, and would 
then dominate (1.6). 

We are grateful to Dr P. G. Drazin, Dr M. E. McIntyre and to a referee for drawing 
our attention to several important references. 
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